3.4.62 \(\int \frac {\sec ^2(e+f x)}{(a+b \sin ^2(e+f x))^{3/2}} \, dx\) [362]

3.4.62.1 Optimal result
3.4.62.2 Mathematica [A] (verified)
3.4.62.3 Rubi [A] (verified)
3.4.62.4 Maple [A] (verified)
3.4.62.5 Fricas [C] (verification not implemented)
3.4.62.6 Sympy [F]
3.4.62.7 Maxima [F]
3.4.62.8 Giac [F]
3.4.62.9 Mupad [F(-1)]

3.4.62.1 Optimal result

Integrand size = 25, antiderivative size = 240 \[ \int \frac {\sec ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=-\frac {(a-b) b \cos (e+f x) \sin (e+f x)}{a (a+b)^2 f \sqrt {a+b \sin ^2(e+f x)}}-\frac {(a-b) \sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a (a+b)^2 f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {\sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{(a+b) f \sqrt {a+b \sin ^2(e+f x)}}+\frac {\tan (e+f x)}{(a+b) f \sqrt {a+b \sin ^2(e+f x)}} \]

output
-(a-b)*b*cos(f*x+e)*sin(f*x+e)/a/(a+b)^2/f/(a+b*sin(f*x+e)^2)^(1/2)-(a-b)* 
EllipticE(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(a+b*si 
n(f*x+e)^2)^(1/2)/a/(a+b)^2/f/(1+b*sin(f*x+e)^2/a)^(1/2)+EllipticF(sin(f*x 
+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(1+b*sin(f*x+e)^2/a)^(1/ 
2)/(a+b)/f/(a+b*sin(f*x+e)^2)^(1/2)+tan(f*x+e)/(a+b)/f/(a+b*sin(f*x+e)^2)^ 
(1/2)
 
3.4.62.2 Mathematica [A] (verified)

Time = 1.57 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.70 \[ \int \frac {\sec ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\frac {-\sqrt {2} a (a-b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )+\sqrt {2} a (a+b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )+\left (2 a^2+a b+b^2+b (-a+b) \cos (2 (e+f x))\right ) \tan (e+f x)}{\sqrt {2} a (a+b)^2 f \sqrt {2 a+b-b \cos (2 (e+f x))}} \]

input
Integrate[Sec[e + f*x]^2/(a + b*Sin[e + f*x]^2)^(3/2),x]
 
output
(-(Sqrt[2]*a*(a - b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + 
f*x, -(b/a)]) + Sqrt[2]*a*(a + b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*E 
llipticF[e + f*x, -(b/a)] + (2*a^2 + a*b + b^2 + b*(-a + b)*Cos[2*(e + f*x 
)])*Tan[e + f*x])/(Sqrt[2]*a*(a + b)^2*f*Sqrt[2*a + b - b*Cos[2*(e + f*x)] 
])
 
3.4.62.3 Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 254, normalized size of antiderivative = 1.06, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {3042, 3671, 316, 27, 402, 25, 399, 323, 321, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\cos (e+f x)^2 \left (a+b \sin (e+f x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 3671

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \int \frac {1}{\left (1-\sin ^2(e+f x)\right )^{3/2} \left (b \sin ^2(e+f x)+a\right )^{3/2}}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 316

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {\int \frac {b \left (\sin ^2(e+f x)+1\right )}{\sqrt {1-\sin ^2(e+f x)} \left (b \sin ^2(e+f x)+a\right )^{3/2}}d\sin (e+f x)}{a+b}+\frac {\sin (e+f x)}{(a+b) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {b \int \frac {\sin ^2(e+f x)+1}{\sqrt {1-\sin ^2(e+f x)} \left (b \sin ^2(e+f x)+a\right )^{3/2}}d\sin (e+f x)}{a+b}+\frac {\sin (e+f x)}{(a+b) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {b \left (-\frac {\int -\frac {2 a-(a-b) \sin ^2(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{a (a+b)}-\frac {(a-b) \sqrt {1-\sin ^2(e+f x)} \sin (e+f x)}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}\right )}{a+b}+\frac {\sin (e+f x)}{(a+b) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {b \left (\frac {\int \frac {2 a-(a-b) \sin ^2(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{a (a+b)}-\frac {(a-b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)}}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}\right )}{a+b}+\frac {\sin (e+f x)}{(a+b) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 399

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {b \left (\frac {\frac {a (a+b) \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{b}-\frac {(a-b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}}{a (a+b)}-\frac {(a-b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)}}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}\right )}{a+b}+\frac {\sin (e+f x)}{(a+b) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {b \left (\frac {\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}d\sin (e+f x)}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {(a-b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}}{a (a+b)}-\frac {(a-b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)}}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}\right )}{a+b}+\frac {\sin (e+f x)}{(a+b) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {b \left (\frac {\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {(a-b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}}{a (a+b)}-\frac {(a-b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)}}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}\right )}{a+b}+\frac {\sin (e+f x)}{(a+b) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 330

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {b \left (\frac {\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {(a-b) \sqrt {a+b \sin ^2(e+f x)} \int \frac {\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}}{a (a+b)}-\frac {(a-b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)}}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}\right )}{a+b}+\frac {\sin (e+f x)}{(a+b) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {b \left (\frac {\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {(a-b) \sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}}{a (a+b)}-\frac {(a-b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)}}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}\right )}{a+b}+\frac {\sin (e+f x)}{(a+b) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

input
Int[Sec[e + f*x]^2/(a + b*Sin[e + f*x]^2)^(3/2),x]
 
output
(Sqrt[Cos[e + f*x]^2]*Sec[e + f*x]*(Sin[e + f*x]/((a + b)*Sqrt[1 - Sin[e + 
 f*x]^2]*Sqrt[a + b*Sin[e + f*x]^2]) + (b*(-(((a - b)*Sin[e + f*x]*Sqrt[1 
- Sin[e + f*x]^2])/(a*(a + b)*Sqrt[a + b*Sin[e + f*x]^2])) + (-(((a - b)*E 
llipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sqrt[a + b*Sin[e + f*x]^2])/(b*Sqrt 
[1 + (b*Sin[e + f*x]^2)/a])) + (a*(a + b)*EllipticF[ArcSin[Sin[e + f*x]], 
-(b/a)]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(b*Sqrt[a + b*Sin[e + f*x]^2]))/(a 
*(a + b))))/(a + b)))/f
 

3.4.62.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 316
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[1/(2*a*(p + 1)*(b*c - a*d))   Int[(a + b*x^2)^(p + 1)*(c + d*x 
^2)^q*Simp[b*c + 2*(p + 1)*(b*c - a*d) + d*b*(2*(p + q + 2) + 1)*x^2, x], x 
], x] /; FreeQ[{a, b, c, d, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  ! 
( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomialQ[a, b, c, d, 2, 
 p, q, x]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3671
Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^( 
p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff*(Sqrt[ 
Cos[e + f*x]^2]/(f*Cos[e + f*x]))   Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a 
 + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] 
 && IntegerQ[m/2] &&  !IntegerQ[p]
 
3.4.62.4 Maple [A] (verified)

Time = 2.98 (sec) , antiderivative size = 360, normalized size of antiderivative = 1.50

method result size
default \(\frac {\sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \left (\sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2}+a b \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right )-\sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2}+\sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a b -b \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right ) a +b^{2} \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )+\sin \left (f x +e \right ) a^{2}+a b \sin \left (f x +e \right )\right )}{\left (a +b \right )^{2} \sqrt {-\left (a +b \left (\sin ^{2}\left (f x +e \right )\right )\right ) \left (\sin \left (f x +e \right )-1\right ) \left (1+\sin \left (f x +e \right )\right )}\, a \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(360\)

input
int(sec(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*((cos(f*x+e)^2)^(1/2)*(-b/a*cos 
(f*x+e)^2+(a+b)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*a^2+a*b*(cos 
(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*EllipticF(sin(f*x+e),(- 
1/a*b)^(1/2))-(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*Ellip 
ticE(sin(f*x+e),(-1/a*b)^(1/2))*a^2+(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^ 
2+(a+b)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a*b-b*cos(f*x+e)^2*s 
in(f*x+e)*a+b^2*cos(f*x+e)^2*sin(f*x+e)+sin(f*x+e)*a^2+a*b*sin(f*x+e))/(a+ 
b)^2/(-(a+b*sin(f*x+e)^2)*(sin(f*x+e)-1)*(1+sin(f*x+e)))^(1/2)/a/cos(f*x+e 
)/(a+b*sin(f*x+e)^2)^(1/2)/f
 
3.4.62.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.17 (sec) , antiderivative size = 1079, normalized size of antiderivative = 4.50 \[ \int \frac {\sec ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(sec(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")
 
output
1/2*((2*((-I*a*b^2 + I*b^3)*cos(f*x + e)^3 + (I*a^2*b - I*b^3)*cos(f*x + e 
))*sqrt(-b)*sqrt((a^2 + a*b)/b^2) - ((2*I*a^2*b - I*a*b^2 - I*b^3)*cos(f*x 
 + e)^3 + (-2*I*a^3 - I*a^2*b + 2*I*a*b^2 + I*b^3)*cos(f*x + e))*sqrt(-b)) 
*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_e(arcsin(sqrt((2*b 
*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) + I*sin(f*x + e))), (8* 
a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2) + (2*((I*a 
*b^2 - I*b^3)*cos(f*x + e)^3 + (-I*a^2*b + I*b^3)*cos(f*x + e))*sqrt(-b)*s 
qrt((a^2 + a*b)/b^2) - ((-2*I*a^2*b + I*a*b^2 + I*b^3)*cos(f*x + e)^3 + (2 
*I*a^3 + I*a^2*b - 2*I*a*b^2 - I*b^3)*cos(f*x + e))*sqrt(-b))*sqrt((2*b*sq 
rt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_e(arcsin(sqrt((2*b*sqrt((a^2 + 
a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) - I*sin(f*x + e))), (8*a^2 + 8*a*b + 
 b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2) - 4*(((I*a*b^2 + I*b^3) 
*cos(f*x + e)^3 + (-I*a^2*b - 2*I*a*b^2 - I*b^3)*cos(f*x + e))*sqrt(-b)*sq 
rt((a^2 + a*b)/b^2) + ((-2*I*a^2*b - I*a*b^2)*cos(f*x + e)^3 + (2*I*a^3 + 
3*I*a^2*b + I*a*b^2)*cos(f*x + e))*sqrt(-b))*sqrt((2*b*sqrt((a^2 + a*b)/b^ 
2) + 2*a + b)/b)*elliptic_f(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + 
 b)/b)*(cos(f*x + e) + I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + 
 b^2)*sqrt((a^2 + a*b)/b^2))/b^2) - 4*(((-I*a*b^2 - I*b^3)*cos(f*x + e)^3 
+ (I*a^2*b + 2*I*a*b^2 + I*b^3)*cos(f*x + e))*sqrt(-b)*sqrt((a^2 + a*b)/b^ 
2) + ((2*I*a^2*b + I*a*b^2)*cos(f*x + e)^3 + (-2*I*a^3 - 3*I*a^2*b - I*...
 
3.4.62.6 Sympy [F]

\[ \int \frac {\sec ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\sec ^{2}{\left (e + f x \right )}}{\left (a + b \sin ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(sec(f*x+e)**2/(a+b*sin(f*x+e)**2)**(3/2),x)
 
output
Integral(sec(e + f*x)**2/(a + b*sin(e + f*x)**2)**(3/2), x)
 
3.4.62.7 Maxima [F]

\[ \int \frac {\sec ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\sec \left (f x + e\right )^{2}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(sec(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")
 
output
integrate(sec(f*x + e)^2/(b*sin(f*x + e)^2 + a)^(3/2), x)
 
3.4.62.8 Giac [F]

\[ \int \frac {\sec ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\sec \left (f x + e\right )^{2}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(sec(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")
 
output
integrate(sec(f*x + e)^2/(b*sin(f*x + e)^2 + a)^(3/2), x)
 
3.4.62.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {1}{{\cos \left (e+f\,x\right )}^2\,{\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{3/2}} \,d x \]

input
int(1/(cos(e + f*x)^2*(a + b*sin(e + f*x)^2)^(3/2)),x)
 
output
int(1/(cos(e + f*x)^2*(a + b*sin(e + f*x)^2)^(3/2)), x)